toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024; đề thi có đáp án và lời giải chi tiết.
Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Gia Lai:
+ Trong một buổi họp mặt giữa hai lớp 8A và 8B có tất cả 62 học sinh tham gia. Các bạn lớp 8B tính số người quen ở lớp 8A và thấy rằng: bạn thứ nhất lớp 8B quen 13 bạn ở lớp 8A, bạn thứ hai lớp 8B quen 14 bạn ở lớp 8A, bạn thứ ba lớp 8B quen 15 bạn ở lớp 8A và cứ như vậy đến bạn cuối cùng của lớp 8B quen tất cả các bạn của lớp 8A. Tính số học sinh mỗi lớp tham gia họp mặt.
+ Cho đường tròn (I; R) nội tiếp tam giác ABC, biết tam giác ABC cân tại A và ABC d 1200, AB = 2(2 + √3). Đường tròn (I; R) tiếp xúc các cạnh AB, AC lần lượt tại D, E. Một tiếp tuyến của đường tròn tại điểm bất kì thuộc cung nhỏ DE cắt các cạnh AB, AC tương ứng tại M và N. a) Chứng minh rằng: MN2 = AM2 + AN2 + AM.AN. b) Tính bán kính R của đường tròn (I; R). c) Chứng minh rằng: 2 3 < MN < 1.
+ Trong hộp có chứa 2024 viên bi màu (mỗi viên bi chỉ có đúng một màu) trong đó có 675 viên bi màu đỏ, 657 viên bi màu xanh, 675 viên bi màu tím và 17 viên bi còn lại là các viên bi màu vàng hoặc màu trắng (mỗi màu có ít nhất một viên). Người ta lấy ra từ hộp 123 viên bi bất kì. Chứng minh rằng, trong số các viên bi vừa lấy ra luôn có ít nhất 36 viên bi cùng màu. Nếu người ta chỉ lấy ra từ hộp 122 viên bi bất kì thì kết luận trên của bài toán còn đúng không?