Logo Header
  1. Môn Toán
  2. đề học sinh giỏi cấp tỉnh toán thcs năm 2022 – 2023 sở gd&đt hậu giang

đề học sinh giỏi cấp tỉnh toán thcs năm 2022 – 2023 sở gd&đt hậu giang

Nội dung đề học sinh giỏi cấp tỉnh toán thcs năm 2022 – 2023 sở gd&đt hậu giang

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 03 năm 2023.

Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Hậu Giang:

+ Cho đa thức f(x) = x4 − 3×3 + mx + n với m và n là các số thực. a) Phân tích đa thức P(x) = x2 – 4x + 3 thành nhân tử. b) Tìm m và n biết rằng f(x) chia hết cho P(x).

+ Trong mặt phẳng Oxy, cho hàm số y = 2mx + m + 2 (với m là tham số thực) có đồ thị là đường thẳng d và hàm số y = -x2 có đồ thị là parabol (P). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn x1 < −l < x2.

+ Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm N khác C sao cho NC < AN. Vẽ đường tròn (O) có tâm O và dường kính NC, đường tròn (O) cắt BC tại E (với E khác C) và cắt đường thẳng BN tại D (với D khác N). 1) Chứng minh tứ giác ABCD nội tiếp. 2) Chứng minh ABN = AEN và NE là tia phân giác của AED. 3) Giả sử EN cắt CD tại F. Chứng minh ba điểm A, B và F thẳng hàng.

File đề học sinh giỏi cấp tỉnh toán thcs năm 2022 – 2023 sở gd&đt hậu giang PDF Chi Tiết