Logo Header
  1. Môn Toán
  2. đề thi học sinh giỏi toán 9 năm 2022 – 2023 phòng gd&đt thành phố thái nguyên

đề thi học sinh giỏi toán 9 năm 2022 – 2023 phòng gd&đt thành phố thái nguyên

Nội dung đề thi học sinh giỏi toán 9 năm 2022 – 2023 phòng gd&đt thành phố thái nguyên

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút.

Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên:

+ Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ.

+ Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Gọi K, G lần lượt là hai điểm đối xứng của điểm H qua các đường thẳng MA, MB. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH3 = AB.AE.BF. d. Gọi I, J lần lượt là tâm của đường tròn đường kính AH và BH. Cho AB = 2R. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất. Tính giá trị đó theo R.

+ Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương.

File đề thi học sinh giỏi toán 9 năm 2022 – 2023 phòng gd&đt thành phố thái nguyên PDF Chi Tiết