toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022.
Trích dẫn Đề thi chọn HSG tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Bình:
+ Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y /> 1.
+ Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP.
+ Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n /> 1). Chứng minh rằng: P không phải là số chính phương.