Logo Header
  1. Môn Toán
  2. đề thi chọn học sinh giỏi toán thcs năm 2022 – 2023 sở gd&đt vĩnh long

đề thi chọn học sinh giỏi toán thcs năm 2022 – 2023 sở gd&đt vĩnh long

Nội dung đề thi chọn học sinh giỏi toán thcs năm 2022 – 2023 sở gd&đt vĩnh long

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 19 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Long:

+ Cho đường tròn O R có đường kính AB. Điểm C là điểm bất kỳ trên O (C AC B). Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt tại P và Q a) Chứng minh 0 POQ 90 và 2 AP BQ R. b) OP cắt AC tại M OQ cắt BC tại N. Gọi H I lần lượt là trung điểm của MN và PQ. Đường trung trực của MN và đường trung trực của PQ cắt nhau tại K. Chứng minh AB IK 4. c) Chứng minh NMQ NPQ.

+ Cho hình vuông ABCD có độ dài đường chéo bằng 1. Tứ giác MNPQ có các đỉnh nằm trên các cạch của hình vuông. Chứng minh rằng chu vi tứ giác MNPQ không nhỏ hơn 2.

+ Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm 1 2 x x thỏa 1 2 2 2 1 2 1 2 x x T đạt giá trị nhỏ nhất.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

File đề thi chọn học sinh giỏi toán thcs năm 2022 – 2023 sở gd&đt vĩnh long PDF Chi Tiết