toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024.
Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Sơn La:
+ Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1;3), parabol (P) và đường thẳng (d) có phương trình lần lượt là: y = x2 và y = ax + 3 – a. a) Chứng minh rằng với mọi giá trị của a đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Giả sử B và C là hai giao điểm của (d) và (P). Tìm a để AB = 2AC.
+ Cho đường tròn (O;R) và dây cung BC = R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng với A). Gọi H là giao điểm của BE và CF. a) Chứng minh KA là đường phân giác trong của góc BKC. b) Chứng minh tứ giác BHCK nội tiếp. c) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính điện tích lớn nhất của tứ giác đó theo R. d) Chứng minh đường thẳng AK luôn đi qua một điểm cố định.