Logo Header
  1. Môn Toán
  2. đề tuyển sinh lớp 10 chuyên môn toán (chuyên) năm 2023 – 2024 sở gd&đt hà nam

đề tuyển sinh lớp 10 chuyên môn toán (chuyên) năm 2023 – 2024 sở gd&đt hà nam

Nội dung đề tuyển sinh lớp 10 chuyên môn toán (chuyên) năm 2023 – 2024 sở gd&đt hà nam

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Ba ngày 30 tháng 05 năm 2023.

Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nam:

+ Cho biểu thức A. 1. Rút gọn biểu thức A. 2. Tìm tất cả các số nguyên của x để |2A − 1| + 1 = 2A.

+ Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và AE là đường kính của đường tròn (O). 1. Chứng minh BAD = CAE. 2. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. 3. Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. 4. Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của đoạn thẳng PQ. Chứng minh rằng đường thẳng AN luôn đi qua một điểm cố định.

+ Cho a, b, c là ba số thực dương thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức.

File đề tuyển sinh lớp 10 chuyên môn toán (chuyên) năm 2023 – 2024 sở gd&đt hà nam PDF Chi Tiết