toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ).
Trích dẫn Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN – Hà Nội:
+ Cho tam giác ABC nhọn vói AB < AC nội tiếp trong đường tròn (O) có tiếp tuyến tại A của (O) cắt BC ở T sao cho TB /> BC. Gọi P và E lần lượt là trung điểm của TA và TC. 1) Chứng minh rằng tứ giác APEB nội tiếp. 2) Gọi giao điểm thứ hai của AE với (O) là F. Lấy G thuộc (O) sao cho FG song song với AC. Chứng minh rằng AT G d TAF d. 3) Gọi H là trực tâm của tam giác ABC,D là giao điểm của AH và BC. M là trung điểm BC. K đối xứng với A qua BC. N thuộc đường thẳng AM sao cho KN song song với HM. Lấy S thuộc BC sao cho NS ⊥ NK. Dựng R thuộc tia AK sao cho AR·AH = AD2. Q là điểm sao cho PQ ⊥ AS và SQ ⊥ AO. Chứng minh rằng điểm đối xứng của A qua QR thuộc đường tròn đường kính DN.
+ Viết 100 số nguyên dương đầu tiên 1; 2; …; 100 vào một bảng ô vuông kích thước 10×10 một cách tuỳ ý sao cho mỗi ô vuông được viết đúng một số. Chứng minh rằng tồn tại hai ô kề nhau (hai ô có cạnh chung) mà hai số được viết ở hai ô này có hiệu lớn hơn hoặc bằng 10?
+ Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn: 4x + (1 + 3y)(1 + 7y) = 2x(3y + 7y + 2).