toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học.
Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc:
+ Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố.
+ Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM.
+ Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.