toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 29 tháng 05 năm 2023.
Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Hà Nam:
+ Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2, đường thẳng (d) có phương trình y = 2x + m2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). 1. Tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. 2. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), tìm tất cả các giá trị của tham số m sao cho |x1 – 2023| – |x2 + 2023| = y1 + y2 – 48.
+ Cho đường tròn (O). Từ điểm M bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không nằm chính giữa cung AB, C khác A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên các đường thẳng AB, AM, BM. 1. Chứng minh tứ giác AECD nội tiếp đường tròn. 2. Chứng minh rằng CDE = CFD. 3. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh CD vuông góc IK. 4. Đường tròn ngoại tiếp hai tam giác CIE và CKF cắt nhau tại điểm thứ hai N (N khác C). Chứng minh đường thẳng NC đi qua trung điểm của đoạn thẳng AB.
+ Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh.