toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An:
+ Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. a) Chứng minh: EA.EB = ED.EC. b) Kẻ đường thẳng đi qua M cắt các cạnh EB, EC theo thứ tự ở P và Q sao cho MP = MQ. Gọi I là trung điểm của BC. Chứng minh rằng: MI vuông góc với PQ.
+ Ba bạn An, Giáp, Mai hẹn gặp nhau tại nhà bạn Giáp, biết rằng nhà bạn An ở vị trí A, nhà bạn Giáp ở vị trí G và nhà bạn Mai ở vị trí M (được mô tả như hình vẽ). Biết rằng tứ giác ABCD là hình vuông và M là trung điểm của CD. Quãng đường bạn Mai đi từ nhà tới nhà bạn Giáp là 2 km. Hỏi bạn An phải đi quãng đường ngắn nhất từ nhà tới nhà bạn Giáp là bao nhiêu kilômét để gặp Giáp và Mai?
+ Để lập đội tuyển năng khiếu về bóng chuyền của một trường thầy thể dục đưa ra quy định tuyển chọn như sau: Mỗi bạn dự tuyển sẽ được phát bóng 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 20 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu?