toanmax.vn giới thiệu đến thầy, cô và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh, kỳ thi nhằm tuyển chọn những em học sinh lớp 8 giỏi môn Toán đang học tập tại các trường THCS tại tỉnh Bắc Ninh để tuyên dương, khen thưởng, làm gương sáng cho các em học sinh khác noi theo.
Đề thi học sinh giỏi Toán 8 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết.
[ads]
Trích dẫn đề thi học sinh giỏi Toán 8 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh:
+ Cho hình vuông ABCD, gọi M là điểm bất kì trên cạnh BC. Trong nửa mặt phẳng bờ AB chứa C, dựng hình vuông AMHN. Qua M dựng đường thẳng d song song với AB, d cắt AH tại E. Đường thẳng AH cắt DC tại F.
a) Chứng minh rằng BM = ND.
b) Tứ giác EMFN là hình gì?
c) Chứng minh chu vi tam giác MFC không đổi khi M thay đổi trên BC.
2) Cho tam giác ABC có góc BAC bằng 90 độ, góc ABC bằng 20 độ. Các điểm E và F lần lượt nằm trên các cạnh AC, AB sao cho góc ABE bằng 10 độ và góc ACF bằng 30 độ. Tính CFE.
+ Cho hình vuông ABCD và 9 đường thẳng cùng có tính chất là mỗi đường thẳng chia hình vuông ABCD thành hai tứ giác có tỉ số diện tích bằng 2/3. Chứng minh rằng có ít nhất 3 đường thẳng trong số đó cùng đi qua một điểm.
+ Cho a, b, c là các số nguyên khác 0, a khác c sao cho (a^2 + b^2)/(b^2 + c^2) = a/c. Chứng minh rằng a^2 + b^2 + c^2 không phải là số nguyên tố.