Logo Header
  1. Môn Toán
  2. đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt ninh bình

đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt ninh bình

Nội dung đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt ninh bình

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2024.

Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2024 – 2025 sở GD&ĐT Ninh Bình:

+ Cho a, b là hai số nguyên dương thỏa mãn a2 + ab + b chia hết cho ab + 1. Chứng minh rằng tồn tại số tự nhiên c sao cho a + b + c + abc là một số chính phương.

+ Cho tam giác ABC (AB < AC) nhọn, không cân, nội tiếp đường tròn tâm O. Gọi H là trực tâm của tam giác ABC và M là trung điểm của đoạn thẳng BC. Các đường thẳng BH, CH theo thứ tự cắt đường thẳng AO tại E, F. Gọi I là tâm đường tròn ngoại tiếp tam giác HEF. a) Chứng minh rằng tam giác ABC đồng dạng với tam giác HEF. b) Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại S. Chứng minh rằng AB/HE = SB/AE và ba điểm A, I, M thẳng hàng. c) Tia MO cắt đường tròn (O) tại điểm D. Đường thẳng qua O song song với AD cắt đường thẳng HD tại điểm G. Chứng minh bốn điểm B, G, O, C cùng thuộc một đường tròn.

+ Một giải bóng đá có n đội tham dự (n thuộc N và n ≥ 2). Các đội đá theo thể thức vòng tròn một lượt tính điểm (hai đội bất kì sẽ gặp nhau đúng 1 lần). Cách tính điểm như sau: Mỗi trận đấu, nếu hòa thì mỗi đội được 1 điểm; nếu không hòa, đội thắng được 3 điểm, đội thua được 0 điểm. Điểm xếp hạng của mỗi đội là tổng số điểm mà đội ấy đạt được sau khi thi đấu tất cả các trận. Kết thúc giải đấu, các đội được xếp hạng theo điểm xếp hạng từ cao xuống thấp, các đội có điểm xếp hạng bằng nhau được xếp cùng một hạng (biết rằng không xảy ra trường hợp cả n đội được xếp cùng một hạng). a) Với số tự nhiên p (p ≤ 3n – 3), người ta đếm được k đội (k thuộc N*) có điểm xếp hạng từ p điểm trở lên. Chứng minh rằng tổng điểm xếp hạng của k đội này không vượt quá 3k(2n – k – 1)/2. b) Xét số điểm chênh lệch nhỏ nhất của hai đội xếp hạng liền nhau. Hỏi số điểm này tối đa có thể bằng bao nhiêu?

File đề tuyển sinh lớp 10 môn toán (chuyên) năm 2024 – 2025 sở gd&đt ninh bình PDF Chi Tiết