Logo Header
  1. Môn Toán
  2. đề hsg toán 10 vòng 2 năm 2022 – 2023 trường thpt nguyễn gia thiều – hà nội

đề hsg toán 10 vòng 2 năm 2022 – 2023 trường thpt nguyễn gia thiều – hà nội

Nội dung đề hsg toán 10 vòng 2 năm 2022 – 2023 trường thpt nguyễn gia thiều – hà nội

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 vòng 2 năm học 2022 – 2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết.

Trích dẫn Đề HSG Toán 10 vòng 2 năm 2022 – 2023 trường THPT Nguyễn Gia Thiều – Hà Nội:

+ Bài toán sản xuất: Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: Nhóm Số máy trong mỗi nhóm Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm Sản phẩm I Sản phẩm II A 10 2 2 B 2 0 1 C 12 1 3. Cho biết một đơn vị sản phẩm I lãi 30 nghìn đồng, một đơn vị sản phẩm II lãi 50 nghìn đồng. Em hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất.

+ Bài toán “Lá cờ Việt Nam”: Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ số vàng hay tỷ lệ vàng nếu tỷ số giữa tổng của các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Tỷ lệ vàng thường được ký hiệu bằng ký tự (phi) trong bảng chữ cái Hy Lạp nhằm tưởng nhớ đến Phidias, nhà điêu khắc đã xây dựng nên đền Parthenon. Tỷ lệ vàng được biểu diễn a b aa b trong đó a b. Hình chữ nhật tỷ lệ vàng với cạnh dài a và cạnh ngắn b, khi đặt cạnh hình vuông có cạnh a, sẽ tạo thành hình chữ nhật đồng dạng tỷ lệ vàng với cạnh dài a b và cạnh ngắn a. Đây cũng minh họa cho liên hệ a b a a b. Bằng kiến thức liên quan đến toán học, em hãy nêu một lí do mà Hiến pháp năm 2013 đã quy định: Quốc kỳ nước Cộng hoà xã hội chủ nghĩa Việt Nam hình chữ nhật có chiều rộng bằng hai phần ba chiều dài.

+ Cho hàm số 2 y x x 2 8 có đồ thị là parabol P. Lấy hai điểm A(-1;-5) và B(5;7) thuộc P. Tìm tọa độ điểm C trên cung AB của P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó.

File đề hsg toán 10 vòng 2 năm 2022 – 2023 trường thpt nguyễn gia thiều – hà nội PDF Chi Tiết