toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa.
Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hoằng Hóa – Thanh Hóa:
+ Cho biểu thức: A. Rút gọn biểu thức A. Tính giá trị biểu thức A khi x thỏa mãn: x3 − 2×2 − 5x + 6 = 0. Cho a, b, c là ba số đôi một không đối nhau thỏa mãn: ab + bc + ca = 5. Tính giá trị của biểu thức: P.
+ Tìm các cặp số nguyên (x;y) thỏa mãn: x2 + xy = 2022x + 2023y + 2024. Cho x, y là các số nguyên sao cho x2 − 2xy − y2 và xy − 2y2 − x đều chia hết cho 5. Chứng minh rằng 2×2 + y2 + 2x + y cũng chia hết cho 5.
+ Cho hình vuông ABCD. Gọi E, K lần lượt là trung điểm của AB và CD; O là giao điểm của AK và DE. Hạ DM vuông góc CE. 1. Chứng minh tứ giác ADKE là hình chữ nhật, từ đó suy ra AM vuông góc KM. 2. Gọi N là giao điểm của AK và BM. Chứng minh ADM cân và tính số đo của góc ANB. 3. Phân giác góc DCE cắt cạnh AD tại F. Chứng minh rằng CF ≤ 2EF.