toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 06 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023.
Trích dẫn Đề học sinh giỏi Toán 10 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hà Nam:
+ Cho hàm số y = x2 − 3x + 4 có đồ thị là (P) và đường thẳng d có phương trình: y = 2x − m với m là tham số. Tìm tất cả các giá trị của m để d cắt (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 = 57 với O là gốc tọa độ.
+ Một xí nghiệp sản xuất hai loại sản phẩm, ký hiệu là I và II. Mỗi tấn sản phẩm I lãi 2 triệu đồng, mỗi tấn sản phẩm II lãi 2,2 triệu đồng. Để sản xuất 1 tấn sản phẩm I, thì phải dùng máy M1 liên tục trong 3 giờ và máy M2 liên tục trong 1 giờ. Để sản xuất 1 tấn sản phẩm II, thì phải dùng máy M1 liên tục trong 1 giờ và máy M2 liên tục trong 2 giờ. Biết rằng, một máy không thể sản xuất đồng thời 2 loại sản phẩm, các máy hoạt động bình thường và máy M1 làm việc không quá 9 giờ trong một ngày, máy M2 làm việc không quá 8 giờ trong một ngày. Hỏi trong một ngày, xí nghiệp cần sản xuất bao nhiêu tấn sản phẩm I và sản phẩm II để thu được tổng số tiền lãi cao nhất?
+ Trong mặt phẳng Oxy, cho hình thang ABCD vuông tại A, D và AB = 2DC. Gọi H là hình chiếu vuông góc của điểm A lên đường chéo BD và E là trung điểm của đoạn thẳng HB. Giả sử H (1;-1), C(3/2;-1/2) và phương trình đường thẳng AE: x – y – 3 = 0. Tìm tọa độ các đỉnh A, B và D của hình thang ABCD.