Logo Header
  1. Môn Toán
  2. đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam

đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam

Nội dung đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 10 chuyên đợt 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023.

Trích dẫn Đề học sinh giỏi tỉnh Toán 10 chuyên đợt 2 năm 2022 – 2023 sở GD&ĐT Quảng Nam:

+ Cho đa thức f(x) với hệ số nguyên và a2023 khác 0 xác định trên tập số thực R. Chứng minh rằng phương trình f2(x) = 4 có số nghiệm nguyên không lớn hơn 2026.

+ Cho ABC là tam giác nhọn, D là điểm bất kỳ trên cạnh BC thỏa AB /> AD; AC /> AD. Trên các cạnh AC, AB lần lượt lấy các điểm E, F sao cho EC = ED, FB = FD. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, BDF, CDE. Gọi H là trực tâm của tam giác JDK. Chứng minh tứ giác IJHK nội tiếp. b) Cho tam giác nhọn ABC (AB < BC) có đường cao AK. Gọi điểm D trên cạnh AC thỏa AD/DC = BK/BC, điểm E di động trên đoạn DC. Gọi F là giao điểm của BE và KD, I là giao điểm của FC và KE. Chứng minh rằng điểm I thuộc đường thẳng cố định.

+ Cho đa giác đều n cạnh (n thuộc N; n ≥ 8). Gọi x; y lần lượt là số tam giác và số tứ giác lập ra từ các đường chéo của đa giác đều đã cho. Tìm n biết x = 2y.

File đề học sinh giỏi tỉnh toán 10 chuyên đợt 2 năm 2022 – 2023 sở gd&đt quảng nam PDF Chi Tiết