Với bài toán hình học trong đề thi tuyển sinh vào lớp 10 môn Toán, sẽ có những yêu cầu chứng minh hai đoạn thẳng bằng nhau hoặc các đoạn thẳng tỷ lệ … mà ta gọi chung là đẳng thức hình học. Tài liệu dưới đây sẽ hệ thống một số biện pháp chứng minh đẳng thức hình học.
Dạng toán đẳng thức hình học là một dạng toán cũng không khó nhưng nó đòi hỏi người giải phải có cái nhìn nhanh (tiết kiệm thời gian) và chuẩn (giải đúng kiếm điểm), xác định đúng phương pháp vô cùng quan trọng. Chính vì vậy việc tự luyện giải nhiều bài toán hình học sẽ giúp cho các em có kỹ năng giải.
PHẦN 1. LÝ THUYẾT CHỨNG MINH ĐẲNG THỨC HÌNH HỌC.
A. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU.
Phương pháp 1: Hai tam giác bằng nhau.
Phương pháp 2: Sử dụng tính chất của các hình đặc biệt.
1. Hai cạnh bên của tam giác cân, tam giác đều.
2. Sử dụng tính chất về cạnh và đường chéo của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật, hình vuông, hình thoi.
Phương pháp 3: Sử dụng tính chất của các đường đặc biệt, điểm đặc biệt.
1. Sử dụng tính chất đường trung tuyến (đường thẳng đi qua trọng tâm tam giác), đường trung tuyến của tam giác vuông, đường trung bình trong tam giác, các đường đồng quy trong tam giác đặc biệt.
2. Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
3. Khoảng cách từ một điểm trên đường trung trực của một đoạn thẳng đến hai đầu đoạn thẳng.
4. Sử dụng tính chất trung điểm.
5. Hình chiếu của hai đường xiên bằng nhau và ngược lại.
Phương pháp 4: Sử dụng các tính chất liên quan đến đường tròn.
1. Sử dụng tính chất hai dây cách đều tâm trong đường tròn.
2. Sử dụng tính chất hai tiếp tuyến giao nhau trong đường tròn.
3. Sử dụng quan hệ giữa cung và dây cung trong một đường tròn.
Phương pháp 5: Sử dụng tỉ số, đoạn thẳng trung gian.
1. Dùng tính chất bắc cầu: Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba.
2. Có cùng độ dài (cùng số đo) hoặc cùng nghiệm đúng một hệ thức.
3. Đường thẳng song song cách đều.
4. Sử dụng tính chất của các đẳng thức, hai phân số bằng nhau.
5. Sử dụng kiến thức về diện tích.
6. Sử dụng bình phương của chúng bằng nhau (có thể sử dụng định lí Pitago, tam giác đồng dạng, hệ thức lượng trong tam giác, trong đường tròn để đưa về bình phương của chúng bằng nhau).
B. CHỨNG MINH HAI ĐOẠN THẲNG TỈ LỆ.
1. Tính chất trung điểm của đoạn thẳng.
2. Tính chất ba đường trung tuyến trong tam giác.
3. Đường trung bình.
4. Định lý Talet.
5. Tính chất đường phân giác của tam giác.
6. Các trường hợp đồng dạng của tam giác.
7. Hệ thức lượng trong tam giác vuông.
8. Tỉ số lượng giác của góc nhọn.
PHẦN 2. BÀI TẬP CHỨNG MINH ĐẲNG THỨC HÌNH HỌC PHẲNG.