Tài liệu gồm 16 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình mũ chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2.
Phương trình một ẩn chứa tham số có dạng f x m 0 1 với m là tham số. Phương pháp biện luận số nghiệm bằng bảng biến thiên (cô lập tham số): Bước 1: Chúng ta tiến hành cô lập tham số m nghĩa là chúng ta biến đổi phương trình 1 về dạng phương trình h m g x 2 trong đó h m là biểu thức chỉ có tham số m và g x là biểu thức chỉ có biến x. Bước 2: Lập bảng biến thiến hàm g. Bước 3: Biện luận số nghiệm phương trình và kết luận.
Phương pháp biện luận số nghiệm bằng tam thức bậc hai Bước 1: Biến đổi phương trình 1 về phương trình bậc hai 2 a t b t c 0 2. Bước 2 : Dựa vào định lý so sánh nghiệm với một số Bước 3 : Kết luận.
Kiến thức bổ trợ : Định lý so sánh nghiệm của phương trình bậc hai với một số Xét 2 f x ax bx c có hai nghiệm 1 2 x x khi đó : x x a f 1 2. Hệ quả (so sánh nghiệm của phương trình bậc hai với hai số) Xét 2 f x ax bx c có hai nghiệm 1 2 x x khi đó : 0 a f a f x x S.
Có bao nhiêu giá trị nguyên của tham số m để phương trình 2 2 1 1 1 1 4 2 .2 2 1 0 x x m m có bốn nghiệm phân biệt? Có bao nhiêu giá trị nguyên của tham số m để phương trình 2 3 3 8 3 x m x có đúng hai nghiệm phân biệt thuộc 0 10. Gọi S là tập hợp các giá trị của tham số m sao cho hai phương trình 2 2 1 3m x và 2 3 2 1 x m x x có nghiệm chung. Tính tổng các phần tử của S.
File WORD (dành cho quý thầy, cô): TẢI XUỐNG