toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kì thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022.
Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa:
+ Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – m + 3 (m là tham số) và parapol (P): y = x2. a) Vẽ đồ thị (P). b) Tìm các số nguyên m để (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn: x12(x2 + 2) + x22(x1 + 2) =< 10.
+ Nhằm đáp ứng nhu cầu sử dụng khẩu trang chống dịch COVID-19, theo kế hoạch, hai tổ sản xuất của một nhà máy dự định làm 720000 khẩu trang. Do áp dụng kĩ thuật mới nên tổ I đã sản xuất vượt kế hoạch 15% và tổ II vượt kế hoạch 12%, vì vậy họ đã làm được 819000 khẩu trang. Hỏi theo kế hoạch số khẩu trang của mỗi tổ sản xuất là bao nhiêu?
+ Cho nửa đường tròn tâm O bán kính 3cm có đường kính AB. Gọi C là điểm thuộc nửa đường tròn sao cho AC /> BC. Vẽ OD vuông góc với AC (D thuộc AC) và CE vuông góc với AB (E thuộc AB). Tiếp tuyến tại B của nửa đường tròn cắt tia AC tại F. a) Chứng minh: ODCE là tứ giác nội tiếp. b) Chứng minh: OCD = CBF. c) Cho BAC = 30°. Tính diện tích phần tam giác ABF nằm bên ngoài đường tròn (O;3cm). d) Khi C di động trên nửa đường tròn (O;3cm). Tìm vị trí điểm C sao cho chu vi tam giác OCE lớn nhất.