Logo Header
  1. Môn Toán
  2. đề tuyển sinh lớp 10 thpt chuyên môn toán năm 2022 – 2023 sở gd&đt lào cai

đề tuyển sinh lớp 10 thpt chuyên môn toán năm 2022 – 2023 sở gd&đt lào cai

Nội dung đề tuyển sinh lớp 10 thpt chuyên môn toán năm 2022 – 2023 sở gd&đt lào cai

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai (đề thi dành cho thí sinh thi vào trường THPT chuyên Lào Cai); kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago).

Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai:

+ Gọi S là tập hợp các số tự nhiên có 4 chữ số. Lấy ngẫu nhiên 1 số từ tập S. Tính xác suất để số lấy được là số chính phương không vượt quá 2022.

+ Theo kế hoạch một công nhân phải làm 54 sản phẩm trong một khoảng thời gian dự định. Do yêu cầu đột xuất, người đó phải làm 68 sản phẩm nên mỗi giờ người đó đã làm tăng thêm 3 sản phẩm vì thế công việc hoàn thành sớm hơn so với dự định là 20 phút. Hỏi theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ người đó làm được không quá 12 sản phẩm.

+ Cho tam giác nhọn ABC không cân (AB < AC) nội tiếp đường tròn (O), ba đường cao AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) của tam giác ABC cắt nhau tại H. Gọi I, M lần lượt là trung điểm của AH và BC. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm K (K khác A). a) Chứng minh rằng tứ giác DMEF nội tiếp. b) Chứng minh rằng tứ giác IOMK là hình thang cân. c) Chứng minh rằng KF.HE = KE.HF. d) Tiếp tuyến tại A và K của đường tròn ngoại tiếp tam giác AEF cắt nhau tại T. Chứng minh rằng TM, AH, EF đồng quy.

File đề tuyển sinh lớp 10 thpt chuyên môn toán năm 2022 – 2023 sở gd&đt lào cai PDF Chi Tiết