Logo Header
  1. Môn Toán
  2. đề học sinh giỏi toán 12 cấp tỉnh năm 2023 – 2024 sở gd&đt đồng nai

đề học sinh giỏi toán 12 cấp tỉnh năm 2023 – 2024 sở gd&đt đồng nai

Nội dung đề học sinh giỏi toán 12 cấp tỉnh năm 2023 – 2024 sở gd&đt đồng nai

toanmax.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 19 tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.

Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Đồng Nai:

+ Tìm tọa độ hai điểm cực trị của đồ thị hàm số y = x3 − 3×2 + 9 và tính khoảng cách giữa hai điểm cực trị đó. Tìm nghiệm dương nhỏ nhất của phương trình 2 sin2 x − sin 2x + sin x − cos x − 1 = 0.

+ Cho một tấm bìa là nửa hình tròn tâm S đường kính AA0. Trên đoạn AA0 lần lượt lấy các điểm B, C, D, D0, C0, B0 thỏa mãn AB = BC = CD = DS = SD0 = D0C0 = C0B0 = B0A0, gọi O là trung điểm của SD. Lần lượt vẽ các nửa đường tròn tâm O đường kính DS, CD0, BC0, AB0. Dán hai bán kính SA với SA0 sao cho A trùng A0, B trùng B0, C trùng C0, D trùng D0 để tạo thành hình nón đỉnh S mà trên mặt xung quanh có đường xoắn ốc từ A đến S gồm các cung tròn đi qua A, B, C, D, S (như hình vẽ minh họa). Tính độ dài đường xoắn ốc, biết thể tích khối nón bằng 64√3π/3.

+ Hỏi có bao nhiêu cách sắp 6 quyển sách khác nhau vào 3 ngăn tủ khác nhau sao cho mỗi ngăn tủ có ít nhất một quyển sách? (Biết mỗi ngăn tủ có thể chứa được từ 1 đến 6 quyển sách và không kể thứ tự các quyển sách trong mỗi ngăn tủ).

File đề học sinh giỏi toán 12 cấp tỉnh năm 2023 – 2024 sở gd&đt đồng nai PDF Chi Tiết