Logo Header
  1. Môn Toán
  2. đề chọn học sinh giỏi tỉnh toán 12 thpt năm 2020 – 2021 sở gd&đt hà tĩnh

đề chọn học sinh giỏi tỉnh toán 12 thpt năm 2020 – 2021 sở gd&đt hà tĩnh

Nội dung đề chọn học sinh giỏi tỉnh toán 12 thpt năm 2020 – 2021 sở gd&đt hà tĩnh

Sáng thứ Sáu ngày 04 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 hệ THPT năm học 2020 – 2021.

Đề chọn học sinh giỏi tỉnh Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 09 bài toán, thời gian học sinh làm bài thi là 180 phút.

Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh:

+ Cho hàm số y = (-2x + 1)/(x + 1) có đồ thị là đường cong (C) và đường thẳng d: y = 2x + m. Tìm m để d cắt (C) tại hai điểm A, B sao cho diện tích tam giác OAB bằng √7 (với O là gốc tọa độ).

+ Một hộp đựng 20 tấm thẻ được đánh số liên tiếp từ 1 đến 20. Một người rút ngẫu nhiên cùng lúc 3 tấm thẻ. Tính xác suất để bất kì hai trong ba tấm thẻ lấy ra có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất hai đơn vị.

+ Phần trên của một cây thông Noel có dạng hình nón, đỉnh S, độ dài đường sinh l = 2m và bán kính đáy r = 1m. Biết rằng AB là một đường kính đáy của hình nón và I là trung điểm đoạn thẳng SB (tham khảo hình vẽ). Để trang trí người ta lắp một dây bóng nháy trên mặt ngoài của cây thông từ vị trí A đến I. Tính độ dài ngắn nhất của dây bóng nháy.

File đề chọn học sinh giỏi tỉnh toán 12 thpt năm 2020 – 2021 sở gd&đt hà tĩnh PDF Chi Tiết