Logo Header
  1. Môn Toán
  2. bài toán thực tế về hàm số môn toán 12 – võ công trường

bài toán thực tế về hàm số môn toán 12 – võ công trường

Tài liệu gồm 95 trang, được biên soạn bởi thầy giáo Võ Công Trường, hướng dẫn giải các dạng toán thực tế thường gặp về hàm số môn Toán 12.

bài toán thực tế về hàm số môn toán 12 – võ công trường

MỤC LỤC:
I. Quy tắc giải bài toán thực tế 2.
Bước 1: Đọc hiểu và phân tích đề bài.
+ Xác định vấn đề thực tế đang được đề cập (liên quan đến kinh tế, vật lý, địa lý, giao thông, dân số, hình học, …).
+ Tìm hiểu các đại lượng đã biết và đại lượng cần tìm.
+ Chú ý đến đơn vị đo lường và điều kiện thực tế (giới hạn, mốc thời gian, phạm vi, …).
Bước 2: Xây dựng mô hình toán học.
+ Gán ẩn số / tham số cho các đại lượng chưa biết.
+ Thiết lập các biểu thức, phương trình, bất phương trình hoặc hàm số biểu diễn mối quan hệ giữa các đại lượng.
+ Có thể sử dụng công thức toán học phù hợp: hàm số bậc hai, bậc ba, lượng giác, mũ – log, hình học không gian.
Bước 3: Giải mô hình toán học.
+ Giải phương trình, hệ phương trình, tìm giá trị lớn nhất / nhỏ nhất, đạo hàm để khảo sát hàm số.
+ Kiểm tra điều kiện xác định, loại nghiệm không phù hợp với thực tế (ví dụ: không nhận nghiệm âm nếu đó là chiều dài, thời gian, …).
Bước 4: Trả lời đáp án và diễn giải kết quả.
+ Diễn đạt kết quả dưới dạng ngôn ngữ thực tế: Đáp án đúng câu hỏi ban đầu của đề.
+ Nêu kết luận rõ ràng: “Vậy chi phí tối thiểu là …”, “Vậy thời gian nhanh nhất là …”.
+ Kiểm tra tính hợp lý của kết quả (có phù hợp với bối cảnh không?).
II. Các dạng toán thường gặp 3.
+ Bài toán chuyển động 3.
+ Bài toán tối ưu lợi nhuận 13.
+ Bài toán thiết kế tối ưu (cực trị hình học: độ dài, khoảng cách, diện tích, thể tích, …) 35.
+ Bài toán liên quan các vấn đề tự nhiên, công nghệ, cuộc sống, … 60.
+ Bài toán về tiệm cận 74.
+ Bài toán thực tế về hàm số – đồ thị 8.

File bài toán thực tế về hàm số môn toán 12 – võ công trường PDF Chi Tiết